Geometric incidence theorems via Fourier analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric incidence theorems via Fourier analysis

We show that every non-trivial Sobolev bound for generalized Radon transforms which average functions over families of curves and surfaces yields an incidence theorem for suitably regular discrete sets of points and curves or surfaces in Euclidean space. This mechanism allows us to deduce geometric results not readily accessible by combinatorial methods.

متن کامل

Geometric Fourier Analysis for Computational Vision

Projective Fourier analysis—geometric Fourier analysis of the group SL(2,C), the group identified in the conformal camera that provides image perspective transformations—is discussed in the framework of representation theory of semisimple Lie groups. The compact model of projective Fourier analysis is constructed, complementing the noncompact model proposed before. Detailed mathematical formula...

متن کامل

Geometric Separator Theorems & Applications

| We nd a large number of \geometric separator theorems" such as: I: Given N disjoint iso-oriented squares in the plane, there exists a rectangle with 2N=3 squares inside, 2N=3 squares outside, and (4 + o(1)) p N partly in & out. II: There exists a rectangle that is crossed by the minimal spanning tree of N sites in the plane at (4 3 1=4 + o(1)) p N points, having 2N=3 sites inside and outside....

متن کامل

Incidence Theorems for Pseudoflats

We prove Pach-Sharir type incidence theorems for a class of curves in Rn and surfaces in R3, which we call pseudoflats. In particular, our results apply to a wide class of generic irreducible real algebraic sets of bounded degree.

متن کامل

Compactness Theorems for Geometric Packings

Moser asked whether the collection of rectangles of dimensions 1 × 12 , 12 × 13 , 1 3 × 14 , . . . , whose total area equals 1, can be packed into the unit square without overlap, and whether the collection of squares of side lengths 12 , 1 3 , 1 4 , . . . can be packed without overlap into a rectangle of area π 2 6 − 1. Computational investigations have been made into packing these collections...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2009

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-09-04866-1